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We describe a method of stabilizing the dominant structure in a chaotic reaction–diffusion system,
where the underlying nonlinear dynamics needs not to be known. The dominant mode is identified by
the Karhunen–Loeve decomposition, also known as orthogonal decomposition. Using a ionic version
of the Brusselator model in a spatially one-dimensional system, our control strategy is based on per-
turbations derived from the amplitude function of the dominant spatial mode. The perturbation is
used in two different ways: A global perturbation is realized by forcing an electric current through
the one-dimensional system, whereas the local perturbation is performed by modulating concentra-
tions of the autocatalyst at the boundaries. Only the global method enhances the contribution of the
dominant mode to the total fluctuation energy. On the other hand, the local method leads to simple
bulk oscillation of the entire system.
Key words: Control of chaos; Orthogonal decomposition; Spatiotemporal patterns.

The control of chaotic behaviour of nonlinear dynamical systems by systematic pertur-
bations has been extensively studied during recent years. Significant progress has been
made in controlling chaos in homogeneous systems with few degrees of freedom. Small
and carefully chosen perturbations of an arbitrary parameter of the system can confine
the dynamics close to a desired unstable fixed point or unstable periodic orbit. This
so-called OGY method has been successively tested in a number of experiments1–3.
Besides the discontinuous OGY method a continuous way of chaos control based on
time-delayed feedback was introduced by Pyragas4–6. A common feature of both men-
tioned methods is that the perturbation almost decreases to zero when the target dy-
namics are achieved. Recently a resonant perturbation of chaos was proposed by
Schneider et al.7. These authors used the dominant frequency of a chaotic time series
for harmonically modulating the flow rate through a stirred reactor and observed the
same periodic orbits which resulted from a control by the Pyragas method. A sinusoidal
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perturbation was also applied to the gas flow in the chaotic CO oxidation. In this case
a periodically oscillating CO2 concentration was obtained; this was interpreted, how-
ever, not in the sense of a stabilized unstable orbit8.

Control of chaos in distributed systems generally cannnot be achieved by using a
single measurement X(t) at one chosen location and linking it with a lumped input
variable via a linear control law of the OGY or Pyragas type. These methods cannot be
applied to spatially extended systems if the correlation length of the spatio-temporally
chaotic pattern is smaller than the size of the system. Taking a set of grid points inside
a spatially one-dimensional system into account, a proper controlling perturbation may
be computed by the projection of the measured output variable onto a desired target
dynamics, which can be determined by Karhunen–Loeve (KL) decomposition9–11. In
this paper we demonstrate the control of spatiotemporal chaos in a simple, spatially
one-dimensional reaction–diffusion–migration system.

THE MODEL

For a description of nonlinear chemical kinetics, we used a ionic version of the well-
known Brusselator12 which is described by the following reaction scheme.

        A  →  X+  +  C–

 B  +  X+  →  Y+  +  D

2 X+  +  Y+  →  3 X+       

 X+  →  X* +

X* +  +  C–  →  E         (1)

All reactions are assumed to be irreversible, the last reaction step being fast compared
to the others and the educts A and B are assumed to be present in excess. Their concen-
trations therefore are treated as constant parameters of the model. Anion C serves to
balance the charges of the activator X and the inhibiting species Y. This modified ionic
Brusselator scheme is described in detail elsewhere12; there, also the scaling of all
dimensionless variables and parameters is given. Using the Nernst–Planck equation to
express the fluxes of the essential compounds, the model results in the following
dimensionless mass balance equations:

∂X
∂τ  = −∇ (−DX∇X − DXX ∇ϕ) + A − (B + 1)X + X2Y

∂Y
∂τ  = −∇ (−DY∇Y − DYY ∇ϕ) + BX − X2Y

∂C
∂τ  = −∇ (−DC∇C + DCC ∇ϕ) + A − X  , (2)
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where X, Y, etc. are dimensionless concentrations of species X, Y, etc., Di are dimen-
sionless diffusion coefficients, and ϕ stands for the appropriately normalized electric
potential.

The mass balance of C may be expressed from the balances of X and Y using the
(approximate) local electroneutrality assumption. As pointed out in previous work12, an
expression for the self-consistent electric field may be derived in a spatially one-dimen-
sional system. For the local gradient of the electric potential inside the reaction–diffu-
sion–migration system one finds:

−∇ϕ = 
I + (DX − DC)∇X + (DY − DC)∇Y

(DX + DC) X + (DY + DC) Y
  . (3)

Here the appropriately normalized electric current I flowing through the medium is
spatially uniform throughout the system and it is considered as a tunable parameter.

RESULTS AND DISCUSSION

It is well known that spatiotemporal oscillations emerge in the classical Brusselator for
proper values of A and B if the diffusion constant of the activator is equal or larger than
the diffusion constant of the inhibitor. In our computations with the dimensionless para-
meter set (A = 2, B = 5.4, DX = 0.008, DY = 0.004, DC = 1.0) the diffusion constant of
the activator X was chosen to be twice the diffusivity of the inhibitor Y. Under these
conditions, the modified ionic Brusselator displays a sequence of periodic, quasiperi-
odic and irregular oscillatory states depending on the system length. Similar behaviour
in the classical Brusselator has been reported a decade ago13,14. Our goal in the present
work, however, was to control the spatiotemporal chaos as demonstrated below.

At system lengths below L = 4.99 (dimensionless units12) the entire system oscillates
in phase with a simple period one. If the system length exceeds this value, a quasiperi-
odic regime is found. Here an amplitude defect embedded in the oscillatory background
develops. This defect slowly travels back and forth through the system thus reflecting
the second frequency of an underlying torus. In an interval between L = 5.1 and L = 7.8,
in-phase oscillations of period one appear again. At system lengths beyond L = 7.8,
chaotic regimes interrupted by period one states are found. In the chaotic states, ampli-
tude defects move through the system in an irregular fashion while the background still
oscillates in a relatively periodic way. An example of spatiotemporal chaos in the ionic
Brusselator is depicted in Fig. 1a.

In order to control the spatiotemporal dynamics described above, we followed the
strategy of modal feedback control11,15,16. A natural choice of modes suitable for con-
trol is to make use of orthogonal modes derived from the Karhunen–Loeve decomposi-
tion. In the KL decomposition, the spatiotemporal pattern made up by a representative
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system variable X(x,t) is decomposed into orthogonal spatial functions Φ(x) (called
topos) and time-dependent amplitude coefficients a(t) (chronos) according to

X(x,t) = ∑ai
i=1

M

(t) Φ(x)  . (4)

Here M denotes the number of equally-spaced grid points employed to discretize the
spatial coordinate x of total length L. The spatial basis functions are computed from the
eigenvectors of the auto-covariance matrix R(x,x′) which is approximated numerically
by the expression

R(x,x′) = 
1
M

 ∑Xi
i=1

M

(x) Xi(x′)  .

The amplitude functions are obtained by projecting the basis functions onto the original
pattern
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FIG. 1
Space–time plots of the autocatalytic variable X (dimensionless) without control (a) and with control
by an electrical field (b). The scale of grey levels encodes the interval between 0.0 (white) and 4.0
(black) dimensionless units of X
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ai(t) = (X(x,t),Φi(x))  , (6)

where (... , ...) denotes the inner product on the space coordinate x. Only the fluctuating
part of the signal is considered, i.e., the time average 〈X(x)〉 is subtracted at each grid
point before the decomposition is performed.

Once the dominant structure (mode) Φd(x) has been identified, a proper control para-
meter P is modulated according to

P(t) = P0(X(x,t),Φd(x)) = P0ad(t)  , (7)

where P0 is the unperturbed value of parameter P and ad(t) is the amplitude (chronos)
of the dominant mode at the actual time t. In the computations presented here, we chose
the electric current driven through the system and the boundary values of the autocata-
lytic variable X as control parameters; the concentration profiles of the activator X were
also used in the KL decomposition. The electric current driven through the one-dimen-
sional system thus was modulated according to

I(t) = I0(X(x,t),Φd(x)) = I0 ad(t)  . (8)

It follows from charge conservation in chemical reactions that current I in the ionic
Brusselator in one-space dimension must be spatially uniform and thus it represents a
tunable parameter of the system. Furthermore, current perturbations act upon the entire
system at the same time and represent a way of globally perturbing the dynamics. In
Fig. 1b, a space–time density plot of variable X under chaos control by current modula-
tions is depicted. Here we modulated the current driven through the system according
to Eq. (8) at a value of the unperturbed current I0 = 3.8. An amplitude defect is locally
pinned by feedback perturbations and the oscillations within the system are fairly regu-
lar. In Fig. 2, the dominant KL modes of the uncontrolled chaotic and the controlled
state are shown. Furthermore, Fig. 3 shows the relative energy captured by the three
most important KL modes as a function of the control amplitude I0. From the figures it
can be seen that the control has stabilized a spatial mode which is similar to the leading
mode of the chaotic state. The energy captured by the dominant mode is maximal for a
control amplitude of I0 = 3.8, where the leading mode contributes 55% to the total
fluctuation energy. In other words, the number of degrees of freedom required to con-
struct a satisfactory approximation of the spatiotemporal behavior is minimal in that
case. The corresponding amplitude functions are aperiodic in the case of chaotic beha-
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vior (Fig. 4) but are fairly periodic with amplitude variations less than 10% in the
controlled case.

On the basis of the KL decomposition, one may compute space- and time-dependent
entropy-like functions which measure the temporal complexity at each spatial grid
point and the time-averaged spatial complexity of the system, respectively17,18. These
entropies are defined by

Hs(t) = − 
1

log N
 ∑ 
i=1

N

pai(t) log pai(t)

Ht(x) = − 
1

log N
 ∑ 
i=1

N

pΦi(x) log pΦi(x)  , (9)

FIG. 2
First (a) and second (b) KL mode with control (dashed line) and in the free running chaotic system

 0.002

 0.001

 0.000

–0.001

–0.002
0                                          5                                        10

dimensionless space

in
te

ns
ity

, 
a.

u.

a
 0.002

 0.001

 0.000

–0.001

–0.002
0                                          5                                        10

dimensionless space

in
te

ns
ity

, 
a.

u.

b

55

45

35

25

15

 5
0                   1                  2                   3                  4                  5

dimensionless electric current

co
nt

ri
bu

tio
n 

to
 t

ot
al

 e
ne

rg
y,

 %

FIG. 3
Contribution of the first three spatial modes
to the total fluctuation energy in depend-
ence on electric current I0

766 Kramer, Munster:

Collect. Czech. Chem. Commun. (Vol. 63) (1998)



FIG. 4
Time series of the first KL amplitude computed for the same time interval and from the same initial
conditions. Unperturbed system (a); controlled system with I0 = 3.8 (b)
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FIG. 5
Temporal entropies H(t) of the chaotic (a) and the
controlled (b) system. c Spatial entropy H(x) of
the chaotic (solid line) and the system under con-
trol (dashed line)
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where the probabilities are given by the expressions

pai(t) = 
λi |ai(t)|

∑ 
j=1

N

λj |aj(t)|

pΦi(x) = 
λi |Φi(x)|

∑ 
j=1

N

λj |Φj(x)|

  . (10)

Here, λ is an eigenvalue of the auto-covariance matrix. The temporal and spatial en-
tropies for the uncontrolled system and the system under control are depicted in Fig. 5.
It is clearly seen that the complexity of the system dynamics is reduced by the modu-
lated electric current. The entropy, however, remains non-zero in the controlled case
corresponding to the relatively complex, but almost periodic spatiotemporal oscillations
which cannot be described by a single KL mode.

In order to compare the control by global parameter modulation with a local control
of the boundary values, Xb(l = 0) and Xb(l = L) were perturbed in the sense of Eq. (7)
according to

Xb = Xb,0 + K (X(x,t),Φ(x))  , (11)

where Xb,0 is a unperturbed boundary value of X under zero-derivative boundary condi-
tions and K is the perturbation amplitude. At a value of K = 7.0 . 10–3, the local control
leads to simple periodic bulk oscillations of the entire system; any information about
the spatial structure of the originally chaotic state, however, is lost.
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Deutsche Forschungsgemeinschaft for financial support.
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