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We describe a method of stabilizing the dominant structure in a chaotic reaction—diffusion s
where the underlying nonlinear dynamics needs not to be known. The dominant mode is identi
the Karhunen—Loeve decomposition, also known as orthogonal decomposition. Using a ionic \
of the Brusselator model in a spatially one-dimensional system, our control strategy is based
turbations derived from the amplitude function of the dominant spatial mode. The perturbat
used in two different ways: A global perturbation is realized by forcing an electric current thr
the one-dimensional system, whereas the local perturbation is performed by modulating con
tions of the autocatalyst at the boundaries. Only the global method enhances the contribution
dominant mode to the total fluctuation energy. On the other hand, the local method leads to
bulk oscillation of the entire system.
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The control of chaotic behaviour of nonlinear dynamical systems by systematic p
bations has been extensively studied during recent years. Significant progress he
made in controlling chaos in homogeneous systems with few degrees of freedom.
and carefully chosen perturbations of an arbitrary parameter of the system can c
the dynamics close to a desired unstable fixed point or unstable periodic orbit.
so-called OGY method has been successively tested in a number of expérime
Besides the discontinuous OGY method a continuous way of chaos control bas
time-delayed feedback was introduced by Pyr&ddad common feature of both men
tioned methods is that the perturbation almost decreases to zero when the tar
namics are achieved. Recently a resonant perturbation of chaos was propo:
Schneideret al/. These authors used the dominant frequency of a chaotic time <
for harmonically modulating the flow rate through a stirred reactor and observe
same periodic orbits which resulted from a control by the Pyragas method. A sinu
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perturbation was also applied to the gas flow in the chaotic CO oxidation. In this
a periodically oscillating C®concentration was obtained; this was interpreted, h
ever, not in the sense of a stabilized unstable %rbit

Control of chaos in distributed systems generally cannnot be achieved by us
single measuremer¥(t) at one chosen location and linking it with a lumped inj
variablevia a linear control law of the OGY or Pyragas type. These methods cann
applied to spatially extended systems if the correlation length of the spatio-temp
chaotic pattern is smaller than the size of the system. Taking a set of grid points
a spatially one-dimensional system into account, a proper controlling perturbatior
be computed by the projection of the measured output variable onto a desired
dynamics, which can be determined by Karhunen-Loeve (KL) decompdsttioim
this paper we demonstrate the control of spatiotemporal chaos in a simple, sp
one-dimensional reaction—diffusion—migration system.

THE MODEL

For a description of nonlinear chemical kinetics, we used a ionic version of the
known Brusselatd? which is described by the following reaction scheme.

A - Xt + C
B + X* -~ Y* + D
2 Xt + vy o, 3X
Xt Lo oX*t
X** + C L E (H]

All reactions are assumed to be irreversible, the last reaction step being fast cor
to the others and the educts A and B are assumed to be present in excess. Their
trations therefore are treated as constant parameters of the model. Anion C se
balance the charges of the activator X and the inhibiting species Y. This modified
Brusselator scheme is described in detail elsewhetleere, also the scaling of al
dimensionless variables and parameters is given. Using the Nernst—Planck equé
express the fluxes of the essential compounds, the model results in the foll
dimensionless mass balance equations:

g—f = —0 (-Dy X~ DX 0f) + A — (B + D)X + X2Y
¥ = —0(-Dy 1Y~ Dy Y 19) + BX- X2Y
%€ =0 (-DIC +DC 1) +A-X @
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whereX, Y, etc. are dimensionless concentrations of species Xt¥, D; are dimen-
sionless diffusion coefficients, anfd stands for the appropriately normalized elect
potential.

The mass balance of C may be expressed from the balances of X and Y usi
(approximate) local electroneutrality assumption. As pointed out in previous3wamnk
expression for the self-consistent electric field may be derived in a spatially one-d
sional system. For the local gradient of the electric potential inside the reaction—
sion—migration system one finds:

0= (Dx+Dg) X+ (Dy +Dg Y ®

Here the appropriately normalized electric currertowing through the medium is
spatially uniform throughout the system and it is considered as a tunable parame

RESULTS AND DISCUSSION

It is well known that spatiotemporal oscillations emerge in the classical Brusselat
proper values of andB if the diffusion constant of the activator is equal or larger tt
the diffusion constant of the inhibitor. In our computations with the dimensionless
meter setA = 2,B = 5.4,Dy = 0.008,Dy = 0.004,D = 1.0) the diffusion constant o
the activatorX was chosen to be twice the diffusivity of the inhibitbrUnder these
conditions, the modified ionic Brusselator displays a sequence of periodic, quas
odic and irregular oscillatory states depending on the system length. Similar beh:
in the classical Brusselator has been reported a decatfe'agour goal in the presen
work, however, was to control the spatiotemporal chaos as demonstrated below.

At system lengths below = 4.99 (dimensionless uni®} the entire system oscillate
in phase with a simple period one. If the system length exceeds this value, a qua
odic regime is found. Here an amplitude defect embedded in the oscillatory backg
develops. This defect slowly travels back and forth through the system thus refle
the second frequency of an underlying torus. In an interval betlveehl1 and_ = 7.8,
in-phase oscillations of period one appear again. At system lengths beyorid3,
chaotic regimes interrupted by period one states are found. In the chaotic states,
tude defects move through the system in an irregular fashion while the backgrour
oscillates in a relatively periodic way. An example of spatiotemporal chaos in the
Brusselator is depicted in Fig. la.

In order to control the spatiotemporal dynamics described above, we followe
strategy of modal feedback contfot®>1€ A natural choice of modes suitable for co
trol is to make use of orthogonal modes derived from the Karhunen—Loeve decor
tion. In the KL decomposition, the spatiotemporal pattern made up by a represer
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system variableX(x,t) is decomposed into orthogonal spatial functi@ns) (called
topo9 and time-dependent amplitude coefficiea (chronog according to

M
X(x8) = > a(t) e(x) @)
i=1

Here M denotes the number of equally-spaced grid points employed to discretiz
spatial coordinat& of total lengthL. The spatial basis functions are computed from
eigenvectors of the auto-covariance maR{x,x') which is approximated numericall
by the expression

M
ROXK) =0 3 X09 X(X) -
i=1

The amplitude functions are obtained by projecting the basis functions onto the or
pattern
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Fe. 1
Space—time plots of the autocatalytic varia¥lédimensionless) without controd) and with control
by an electrical fieldk). The scale of grey levels encodes the interval between 0.0 (white) an
(black) dimensionless units of
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a(t) = (X(x0,%;(9) ©

where (..., ...) denotes the inner product on the space coorgir@mdy the fluctuating
part of the signal is considereics., the time averageX(x)Uis subtracted at each gri
point before the decomposition is performed.

Once the dominant structure (mode)x) has been identified, a proper control pal
meterP is modulated according to

P(t) = Po(X(x,1),®4(x) = Poay(t) @

whereP, is the unperturbed value of parameReanday(t) is the amplitudechronog
of the dominant mode at the actual timé the computations presented here, we ch
the electric current driven through the system and the boundary values of the au
Iytic variableX as control parameters; the concentration profiles of the actiXat@re
also used in the KL decomposition. The electric current driven through the one-d
sional system thus was modulated according to

1() = To(X(D),P¢(X)) = 1o 8(0) - ®

It follows from charge conservation in chemical reactions that cutrémtthe ionic

Brusselator in one-space dimension must be spatially uniform and thus it repres
tunable parameter of the system. Furthermore, current perturbations act upon the
system at the same time and represent a way of globally perturbing the dynam
Fig. 1b, a space—time density plot of variallander chaos control by current modul
tions is depicted. Here we modulated the current driven through the system acc
to Eq. B) at a value of the unperturbed currént 3.8. An amplitude defect is locally
pinned by feedback perturbations and the oscillations within the system are fairly
lar. In Fig. 2, the dominant KL modes of the uncontrolled chaotic and the contr
state are shown. Furthermore, Fig. 3 shows the relative energy captured by the
most important KL modes as a function of the control amplityderom the figures it
can be seen that the control has stabilized a spatial mode which is similar to the |
mode of the chaotic state. The energy captured by the dominant mode is maxime
control amplitude ofl, = 3.8, where the leading mode contributes 55% to the t
fluctuation energy. In other words, the number of degrees of freedom required tc
struct a satisfactory approximation of the spatiotemporal behavior is minimal in
case. The corresponding amplitude functions are aperiodic in the case of chaotic
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vior (Fig. 4) but are fairly periodic with amplitude variations less than 10% in
controlled case.

On the basis of the KL decomposition, one may compute space- and time-depe
entropy-like functions which measure the temporal complexity at each spatial
point and the time-averaged spatial complexity of the system, respetiitfeljhese
entropies are defined by

N
H(t) = - ﬁ 3 Pal)0gPa()

N
1
M) == o5 N 2 Poil® 109Pai(Y) | ©
i=1
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where the probabilities are given by the expressions

A Ja(t
oy = RO
e
j=1
A |,
Pai(X) = M . 10
Z A &3]
j=1

Here, A is an eigenvalue of the auto-covariance matrix. The temporal and spati
tropies for the uncontrolled system and the system under control are depicted in
It is clearly seen that the complexity of the system dynamics is reduced by the 1
lated electric current. The entropy, however, remains non-zero in the controlled
corresponding to the relatively complex, but almost periodic spatiotemporal oscille
which cannot be described by a single KL mode.

In order to compare the control by global parameter modulation with a local ca
of the boundary value,(I = 0) andX,(I = L) were perturbed in the sense of Ef. (
according to

Xp = X0t K (X(x1),®(3) , a1

whereX, ois a unperturbed boundary valueXotinder zero-derivative boundary cond
tions andK is the perturbation amplitude. At a valuekok 7.0 . 108, the local control
leads to simple periodic bulk oscillations of the entire system; any information &
the spatial structure of the originally chaotic state, however, is lost.
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